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Abstract

The power of foundation models (FMs) lies in their capacity to learn highly expressive
representations that can be adapted to a broad spectrum of tasks. However, these pretrained
models require additional training stages to become effective for downstream applications. In the
multi-task setting, prior works have shown empirically that specific meta-learning approaches
for preparing a model for future adaption through parameter-efficient fine-tuning (PEFT) can
outperform standard retraining methods, but the mechanism of the benefits of meta-learning has
been largely unexplored. We introduce a framework for generic PEFT-based meta-learning to
learn a model that can be easily adapted to unseen tasks. For linear models using LoRA, we show
that standard retraining is provably suboptimal for finding an adaptable set of parameters and
provide strict performance guarantees for our proposed method. We then verify these theoretical
insights through extensive experiments on synthetic data as well as real NLP tasks using large
language models. We observe significant performance benefits using a simple implementation of
our proposed meta-learning scheme during retraining relative to the conventional approach.

*Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin,
Austin, TX, USA. {jblock@utexas.edu, sundararajans@Qutexas.edu, liamc@utexas.edu, mokhtari@austin.utexas.edu,
sanjay.shakkottai@utexas.edu}



1 Introduction

Foundation Models (FMs) learn rich representations that are useful for a variety of downstream
tasks. The first stage of FM training is referred to as pretraining, where a combination of massive
public, propriety, and synthetic sources of data is used to learn a general-purpose model from scratch
[DCLT19; BMRSKDN+20; AAAAAB+24; Rad+21]. However, due to the enormous cost of training
state-of-the-art models on such large datasets, pretraining is largely infeasible for most. Thus, the
most popular and viable way to utilize FMs for individual tasks is to take a pretrained model and
adapt it for a specific task.

We consider the problem of adapting a pretrained FM to a collection of related tasks of interest.
We refer to this process as retraining, where given a number of tasks with many samples, our goal
is to recover a model that learns the task structure and can be quickly adapted to future tasks
with limited samples. In other works this stage has been referred to pre-finetuning [AGSCZG21]
or supervised fine-tuning [DYLLXLWYZZ24]. After retraining, we adapt the model to a new
task with few samples in what we denote the fine-tuning stage. In this last stage, we typically
employ parameter efficient fine-tuning (PEFT) methods — training heuristics which sacrifice learning
expressiveness for improved computational efficiency [HSWALWWC21; LL21]. Ultimately, the
purpose of retraining is to prepare the model for efficient future adaptation, and the effectiveness of
a retraining method is measured by the model’s performance on the fine-tuning task.

Standard approaches to retraining involve fitting the model to the aggregation of the different
retraining tasks. While this seems reasonable and has been empirically successful [KMKSTCH20;
RSRLNMZLIL20], it does not leverage knowledge of the downstream fine-tuning procedure to cater
the retrained model to perform well after such adaptation. Rather, it retrains the model to minimize
the average loss across the retraining tasks regardless of the PEFT method to be employed later.
Thus, there is no assurance the recovered solution is indeed adaptable to future unseen tasks relative
to other possible retraining solutions.

Meta-learning is natural framework to address this issue, as it explicitly aims to learn adaptable
models, typically in low-resource, few-shot settings using gradient-based adaptations [FAL1T,;
LC18]. The success of meta-learning algorithms is largely attributed to their ability to learn useful
representations, as even model-agnostic gradient-based meta-learning algorithms like MAML [FAL17]
and Reptile [NAS18] have been shown to implicitly learn representations in linear settings [CMOS22;
SZKA20]. Recent works have shown empirical benefits to retraining using specific PEFT-based
meta-learning methods [HSP22; HJ22; BAWLM?22; GMM22; HMMF23], but theoretical guarantees
showcasing these gains have not been established.

Contributions. In this work, we study a general framework for PEFT-based meta-learning during
retraining. Overall, our aim is to show that meta-learning provably outperforms standard retraining
methods, not that our framework is optimal amongst other meta-learning variants. We focus on
the Low-Rank Adaptation (LoRA) [HSWALWWC21] PEFT method and consider multiple linear
regression tasks where each ground truth regressor is a rank-k perturbation of a common matrix
A* € R4, Given a set of T tasks, our goal is to recover A* so that we can easily fine-tune to a
new, unseen task by learning a low-rank perturbation using LoRA. With this in mind, we show the
following;:

e We prove that standard retraining (which does not leverage any meta-learning scheme) even
in the infinite sample case fails to recover parameters which are low-rank adaptable, as the
recovered model is not low-rank away from A* and consequently the test model (Proposition



3). Applying low-rank adaptations then completely fails, as for large number of tasks, the
population risk on the test task scales as €2 ((d - r)kz), where d is the ambient dimension,
k < d is the ground truth adapter rank, and r > k is the rank used for fine-tuning (Proposition
4). Further, fine-tuning with a very large rank to account for the discrepancy to the test task
defeats the purpose of PEFT and results in squared prediction error which grows as O (%)
with high probability, in the regime where k(T + 1) < d (Remarks 1, 2). Thus, standard
retraining performs worse when given access to more tasks.

e For the meta-learning framework we study, we guarantee that any minimizer of the meta-
learning loss in the infinite sample case is indeed low-rank adaptable to unseen tasks (Theorem
5). Further, we show that if there are at least three retraining tasks, the ground truth
parameters are the unique global minima up to orthogonal symmetry (Theorem 8). As a
result, LoRA fine-tuning is effective in adapting to the test task and with high probability
achieves squared prediction error which grows as O (%) (Corollary 10). In contrast to standard
retraining, we achieve the optimal rate which does not include any dependence on T

e We prove in the infinite sample case, every second-order stationary point of our meta-learning
loss when applied to two retraining tasks is in fact globally optimal (Theorem 11). In this
case there are no spurious local minima of our meta-learning loss and optimality is completely
determined by second-order information. Thus, local optimization methods like perturbed
gradient descent can efficiently find global minima.

To the author’s knowledge, these are the first results showing that PEFT-based meta-learning
provably outperforms standard retraining methods in any setting. The proofs of our results are
presented in Appendix B.

To verify our theoretical insights, we compare the performance of the standard retraining and
LoRA-based meta-learning objectives for synthetic multi-output linear regression and shallow neural
network regression tasks. We show clear improvements using LoRA-based meta-learning for all data
generation parameter settings. Then, we apply a simple implementation of our general LoRA-based
meta-learning framework to the RoOBERTa [LOGDJCLLZS19] large language model (LLM) on the
ConvAI2 [Din+19] NLP dataset. Again, we show improvements using the LoRA-based meta-learning
relative to standard retraining.

1.1 Related Work

Meta-learning is a framework for learning models that can be rapidly adapted to unseen tasks
by leveraging access to prior tasks during training. For example, Model-Agnostic Meta-Learning
(MAML) [FAL17] is a popular method that aims to find a model that can be adapted to a new
task after a small number of steps of gradient descent on the new task’s loss function. Other works
have proposed methods specific to low-dimensional linear models and have shown strong theoretical
results and connections between meta-learning and representation learning [CMOS22; TJNO21;
SZKA20].

In the case of FMs, specific meta-learning approaches for incorporating PEFT-based adaption have
been proposed. Hong and Jang [HJ22], Bansal, Alzubi, Wang, Lee, and McCallum [BAWLM22],
and Gheini, Ma, and May [GMM22] applied meta-learning with architecture adaptations that inject
task-specific trainable layers within the FM architecture. Hou, Salazar, and Polovets [HSP22]
combined architecture adaptations with parameter perturbations similar to LoRA. They considered



a complicated meta-learning loss that updates the adapters and FM weights over different splits of
the data and showed empirical gains over standard retraining and other gradient-based MAML-
style algorithms. Aghajanyan, Gupta, Shrivastava, Chen, Zettlemoyer, and Gupta [AGSCZG21]
similarly proposed a multi-task objective that trains an FM on different tasks simultaneously to
encourage learning a universally applicable representation. It forces the FM to learn a shared data
representation but allows for task-specific prediction heads. Overall, each of these works proposed
some kind of meta-learning or multi-task objective and showed empirical gains over standard
retraining strategies. However, their experimental results motivate a deeper theoretical exploration
of when standard retraining is insufficient relative to meta-learning approaches, how many tasks are
needed to learn a rich representation, and how to best adapt to tasks unseen in the training stage.

Lastly, although we focus on LoRA, different PEFT methods have been proposed, including variants
of LoRA [LWYMWCC24; DPHZ23; ZCBHCCZ23] and architecture adaptations [HGIMDGAG19]
among others. Further, recent works have analyzed the theoretical aspects of LoRA in the fine-
tuning stage [JLR24; ZL23], but they explored orthogonal directions to the analysis of LoRA-based
meta-learning during retraining. Extended discussion of these prior works is in Appendix A.

Notation. We use bold capital letters for matrices and bold lowercase letters for vectors. N (p, )
refers to the multivariate Gaussian distribution with mean g and covariance matrix 3. Iy refers to
the d x d identity matrix. ||-|| refers to the Frobenius norm. Sy refers to the set of d x d symmetric
matrices, and 5’; is the set of d x d positive semi-definite matrices. O, refers to the set of d x d
orthogonal matrices. [n] refers to the set {1,...,n}. For a matrix X € R™*" im(X) and ker(X)
refer to the image and kernel of X, while vec(X) € R™" denotes the column-wise vectorization of X.
For subspaces M, N, dim(M) refers to the dimension of M and M+ N = {x+y|lr € M,y € N}.
If M NN = {0}, we write the direct sum M & N.

2 Retraining and Fine-Tuning Schemes

We briefly recap the optimization process for standard retraining of an FM across multiple tasks
followed by fine-tuning on a downstream task. We then introduce a general framework for PEFT-
based meta-learning which adjusts the retraining phase to incorporate insights from fine-tuning.

2.1 Standard Retraining Then Fine-Tuning

Consider a collection of T' tasks of interest T = {7;}]_; where each task 7; is drawn from task
distribution D and consists of n; labeled examples Ty = {(x1,yr;)};5,, Where (@1, ;) are
iid. from the ¢y, task’s data distribution D7;. Without loss of generality we assume consistent
dimensions across tasks, so x;; € R, vy ; € R for all t € [T],j € [n4]. Let X; € R%>*" and
Y; € R%*™ denote the concatenation of x;j and y;; for j = 1,...,n; respectively. Consider a
model ®(-; W) : R% — R% parameterized by weights W that maps feature vectors to predicted
labels. We abuse notation and write ®(X; ; W) to denote the concatenation of ®(x;;; W) for
j=1,...,ns Typically W = (Wy,...,W,,) is a list of matrices where W; € R?*¢ parameterize
the layers of a neural network. We assume each W; is square for convenience.

Retraining Phase. Given a loss function £, standard retraining attempts to minimize the
aggregated loss over a collection of training tasks [LOGDJCLLZS19; BMRSKDN+20]. This



amounts to solving

T
W = min ) | £(2(X; W), Yi), (1)
t=1

where SR stands for Standard Retraining. The above optimization problem seeks a set of universal
parameters that define a unique mapping function capable of translating inputs to outputs across
all tasks involved in the retraining phase. We denote the corresponding model as ®( - ; Wgg).

Fine-Tuning Phase. In the subsequent fine-tuning, PEFT is often used to refine either the
retrained weights WSR, the model’s feature map ®, or both to fit a downstream task with fewer
labeled samples. More precisely, consider a downstream task 7741 drawn from the same distribution
D where Try1 = {(xr+15, yT-‘rl,j)}?jli-fl' To fit the model to task 7741 we fix W = Wgg in the
original parameterization and fine-tune the mapping ®( - ; WSR) using additional parameters 6. For
example, 8 could parameterize trainable perturbations of Wsg or new trainable layers inserted
into the architecture of the retrained model [HSWALWWC21; LWYMWCC24; AGSCZG21]. We
denote the fine-tuned model’s mapping as Ppp( - ; WSR, 0) : R% — R% and again abuse notation by
writing ®pr(Xry1; War, 0) to denote the concatenation of ®pr (L7471 5; Wer, 0)forj=1,...,n741.
During the fine-tuning stage, the goal is to find the optimal additional parameters, 6, that minimize
the loss for the downstream task 7741, solving

min £(®pr (X741 5 Wer, 0), Yri1). (2)

In particular, when LoRA is used for fine-tuning, the model is adapted to task Tri1 by fixing the
architecture and the retrained weights Wsr and only training low-rank perturbations for each of the
matrices VAVSRJ, e WSRM. For rank-r adaptations, we parameterize 8 = ((Q1,V1),...,(Qm, Vin)),
where Q;, V; € R¥" are the factors of the low-rank adaptation of the ith matrix in Wgr. The
fine-tuned model is just the original model where the ith weight matrix W; is now perturbed to be
W, +Q,;V,". For Q,V € (Rd”)m, define the LoRA loss

Lrora (Q,V ;W) =
L (‘1) (XT+1 ; (Wz + Qz’Vz'Ty.n 1) 7YT+1> : (3)

—

The LORA ﬁne—tuning Optimization problem iS then
min £ Q V. "A" . 4
Q,lV LoRA( ) ) SR) ( )

This pipeline seems reasonable as we first fit the model to the aggregation of the retraining tasks
which we hope will promote learning the general structure of the tasks drawn from D. However,
nothing about standard retraining promotes learning an adaptable solution relative to other candidate
solutions that fit the retraining tasks. Next, we introduce a general meta-learning framework which
explicitly incorporates the adaption mechanism during retraining.

2.2 PEFT-Based Meta-Learning

Since the ultimate goal of retraining is to perform well on an unseen downstream task, we study a
general PEFT-based meta-learning (PEFT-ML) objective that explicitly fits weights and adapter
parameters to the training tasks. Rather than training a single model on the aggregation of the
retraining tasks, we instead incorporate the adapters during the retraining process and learn adapted



models for each task. Let 8() be the set of adapter parameters for the t;, training task 7;. The
PEFT-ML objective searches for a single set of base weights WMeta such that for all ¢ € [T, the ¢y,
adapted model ®pp( - ;WMeta, O(t)) minimizes the loss over the training task 7;. More precisely, we
define the proposed PEFT-ML objective as

T
WMeta = I%n tzl [:t(W)a (5)

where £,(W) = mingu) £ (<I>FT (Xt ‘W, O(t)) ,Yt). When we use LoRA as the adaptation method,

we define QW V() ¢ (Rd”)m as the list of factors of the low-rank adapter Qgt)(Vi(t))T applied to
the ith weight matrix for the #;, task. Then the inner objective L£;(W') reduces to

i Eo (@0.0:9). 0

In this case, we refer to the objective function as LoRA-ML. This proposed optimization problem
is designed to replace the standard retraining objective in (1). After solving (5) we recover base
parameters WMeta that are explicitly designed to be adaptable to downstream tasks drawn from
the same distribution as those seen in retraining. To perform finetuning, we then run the exact
same minimization in (2) but using retrained weights Wileta instead of Wgg.

3 Main Results

To establish our theoretical results, we consider 7" > 1 multi-output linear regression retraining tasks
{7}}th1 and one downstream test task 7741, where the ground-truth regressor for each task is a
low-rank perturbation of a common shared matrix. Precisely, for each ¢t € [T'+ 1] we assume task 7Ty
is independently drawn from distribution D4+ which associated with some fixed matrix A* € R¢x¢
and intrinsic adaptation rank k£ < d. Then, task 7; is equipped with n; samples (¢ j, ys ;) € R? x R?
for j =1,...,n; which are related by the noisy linear transformation parameterized by A* + R},
where rank(R}) = k. Formally,

Ti ~Dax:
Te={A"+ R} {21,y ;};21} st rank(Ry) =k

where R} € R™? and @, ;,y;; € R? are generated as follows. Consider rank-k factor U; € R%**
where vec(U;") ~ N (0, I4), input vectors x; ; which satisfy E [x; ;] = 0 and E [aztszj] = o021y,
and independently generated noise terms €, ; ~ N(0, 021,). Then,

R, =U;U"  yj=(A"+ Rz, + e

The above generative model defines the input-output relationships for each task as similar linear
models, differing from each other only by a low-rank perturbation.

Remark 1. For convenience, we require a mild sense of task diversity and assume that the aggregated
columns from allU}, t € [T+1], form a linearly independent set, i.e. dim (1m(Ui") DD im(UZFH)) =
k(T+1). Thus, we implicitly require that the ambient dimension d > k(T'+1). Then ford > k(T'+1),
the generation process of each U} ensures that this assumption then holds with probability 1.



The learner uses the linear model ®(x; A) = Ax for A € R%*? and retrains on tasks 71, ..., T7 with
the ultimate goal of efficient adaption to 7741 using LoRA. Ideally, we hope to recover parameter
value A = A* in the retraining phase so that the fine-tuned model ®pr(x; A, Q, V)= (A+ QV Nx
can fit the data distribution of any downstream task also drawn from D with a proper rank-k
adapter QV' '. We define the finite-sample loss function for task ¢ as

5 (7)

1 &
Ly'(A) = o, Z [yt — Awe
j=1

and we define £;(A) as the shifted and scaled infinite sample loss, i.e.,

\ 1 ne o?
Et (A) = ; Em,y [ﬁt (A)] - ?
_ 1 * xyprE | 2

=3 (A YU AHF. (8)

We consider the setting where for the retraining tasks ¢ < T we have large n, but for the test task
nr41 is small. This reflects practical scenarios where we have access to large retraining datasets
compared to the low-resource fine-tuning task. Thus, we assume access to the infinite sample loss
functions £} for the retraining tasks ¢ < T'. Then, for ease of notation, define n = nyy; as the
number of test task samples. We ultimately aim to use LoRA to fit the finite-sample test task loss
L7, efficiently in n.

Given a learned representation A € R™4 from retraining, the fine-tuning problem using LoRA with
rank r reduces to

min L3, (A+QV'T 9
i Lha(A+QVT) (9)
Since QV' T can parameterize any rank-r matrix, (9) is a specific parametrization for what is
commonly known as reduced rank regression [Ize75]. It is clear that to even realize the optimal
regressor A* — A + U}‘HU}‘L for QV'T, we need r > rank(A* — A + U}HU}II) . Further,
results in reduced rank regression and matrix sensing in general reveal the importance of rank(A* +
U, U3l — A) in terms of the hardness of minimizing £7.,,(A+ QV").

Lemma 1 (]:%unea, She, and Wegkamp, 2011). Constider A € R gnd let r = rank(A* +
U}HU}II—A). Let Q*, V* € RY" minimize E%H(A—i-QVT) over all rank-r factors Q,V & RI*"
and let Xpi1 = [®1411,- .., T711,0] be the matriz whose columns are the test task input samples.
Denote the matriz of prediction errors E = (A* + UZ’FHUF}II)XTJA —(A+Q*V*"Xr,1. Then
vy > 0,

1 24(1 + v)%02rd

’ < ||, < 2+ oerd \ X) 21— (10)

n n
In general, the squared prediction error scales linearly with rd. This matches the information-
theoretic lower bound to learn rd number of parameters and is further minimax optimal over all
rank-r matrices when the eigenvalues of X; 11 X7+1 are uniformly bounded so that a restricted

isometry condition is satisfied [RT11]. Thus, a larger rank of A* — A+ U; +1U:7“11 inflates the

fine-tuning prediction error, as we hope to recover A = A* so that rank(A* — A+ Uy HU}L) =k.
With this in mind, we compare the standard retraining (1) and LoRA-ML (6) objectives.



3.1 Standard Retraining Then Fine-Tuning

Consider standard retraining then fine-tuning as a candidate for ultimately minimizing (9). The
learner first finds a single matrix Aggr that minimizes the sum of losses ZtT:1 L

T
. 1 T 2
Agg = argmin ; 5 jHA* U;U; —AH . 11
SR arg;nlnztz1 + U, Uy » (11)

Then when given test task 771, the learner solves ming v ecgaxr L7 +1(ASR +QV'"). However, this
strategy suffers substantial loss in both the retraining and fine-tuning stages. Notice the loss in (11)
is convex and quadratic in A, so simple first-order optimality shows that

T
A * 1 x|
ASR =A"+ T t_g - Ut Ut . (12)

Thus, Agr recovers A* added to the average of the retraining ground truth adaptations Ut*Ut*T.
However, Agr performs poorly on all of the retraining tasks, as standard retraining is unable to
disentangle the common structure A* from the task-specific adapters U;U; " .

Theorem 2. Let U* = (U7,...,Uj}). Then,

2
Egre = (T+1-Z)kd(d+1) =9 (Tkd?)

T ~
> Li(Agg)

Thus, Agp, suffers significant loss on the retraining tasks when averaged over the generation process
of ground truth parameters U*. Further, Aggr is not low-rank adaptable to the test task. Crucially,
the intrinsic dimension of the test task is rank(A* + U +1U7*“11 — Agr) = k(T +1), so an adaptation
rank of k(T + 1) is required to even achieve the ground truth test task parameters.

Proposition 3. If test task fine-tuning rank v < k(T + 1), then L% ,(Q,V ;ASR) > 0 for all
Q,V c R¥x",

Even though the test task parameters are only rank-k away from A*, standard retraining fails to
exploit this structure and inflates the necessary rank to k(7 +1). Thus, standard retraining actually
recovers worse representations as the number of tasks 7" grows. In this case, failing to fine-tune
with large enough rank causes significant loss.

Proposition 4. For a large number of retraining tasks T and test task fine-tuning rank r < k(T +1),
Q. V5 Agp) =Q ((d —r)k?) for all Q,V € R,

When the test task fine-tuning rank r is under-specified relative to the required rank k(7 + 1), the
squared error between the recovered parameter for the test task and the ground truth grows like
(d — r)k? for large T.

The above propositions demonstrate the cost of under-specifying the fine-tuning rank relative to the
large intrinsic dimension of the test task which results from standard retraining. On the other hand,
applying the necessarily large fine-tuning rank r = k(7" + 1) both defeats the purpose of low-rank
adaptation as a PEFT method and still incurs large prediction error when fine-tuning with limited
samples.



Remark 2. Consider the finite-sample loss (9) using Agp adapted with LoRA using rank r =
k(T +1). This can achieve optimal population risk but suffers in the finite-sample setting. Using
Lemma 1, we can only hope to achieve squared prediction error of order (’)(%) when fine-tuning,
much larger than the optimal rate O (k—f) if we had in fact recovered the ground truth A* during
retraining.

Thus, standard retraining recovers parameters that cannot be efficiently low-rank
adapted to any relevant task. In contrast, our analysis of using LoRA-ML during retraining
shows much improved performance.

3.2 LoRA-Meta-Learning

Consider applying (6) to this problem instance. We introduce low-rank adapters during the retraining
phase to model the different training tasks and search for a value of A such that for all 7;, the loss
7 after running LoRA on 7; is minimized. This promotes values of A that can be easily adapted
to unseen tasks downstream. We use the LoRA-ML loss but with symmetric low-rank adapters
UtUtT for the ¢, task 7y in retraining. We still use asymmetric adapters for fine-tuning on the test
task with loss L7 ;. The LoRA-ML loss given access to infinite sample task losses Lj is then

T
Loteta(A) =) min £7 (A + uU). (13)
=1 '

Define the concatenation of each U; as U = (Uy,...,Ur) € (Rka)T. Then minimizing (13) is
equivalent to solving ming ¢y £L*(A,U) where

£(A, U):% ET: HA*JrUt*Ut*T—A—UtUtTH: (14)
t=1

We have seen that standard retraining does not recover an optimal solution, but it is unclear what
the global minima of this new objective function are and if they can be easily found. Note that by
fixing A, (14) is T independent symmetric matrix factorization problems, and by fixing U, (14) is a
convex quadratic problem over A. Despite these well-understood sub-problems, joint minimization
over A and U presents challenging variable interactions that complicate the analysis. Nevertheless,
we employ a careful landscape analysis of (14) to address these questions.

3.2.1 Landscape of Global Minima of (14)

We first show that the objective is well-posed, i.e., minimization of £ leads to an adaptable solution.

Theorem 5. If L*(A,U) =0, then A = A* + C where rank(C) < 2k

Any point is a global minimum of (14) if and only if it achieves zero loss. Theorem 5 guarantees
that the values of A that induce global minima of (14) are at most rank-2k away from the ground
truth parameter A*. Then, the remaining intrinsic dimension of the test task is just 3k < d.

Corollary 6. If L* (A, l}') =0, then there exists a rank-3k adapter QV' T such that Lr1(Q,V; A) =
0.



Since the sufficient LoRA rank for fine-tuning is just 3k, we realize a much improved fine-sample
prediction error.

Corollary 7. Let L*(A,U) = 0 and let Q*,V* € R¥>3F minimize E%_H(A +QVT) over all
Q.,V e R¥™3k  Then, A+ Q*V*" satisfies Lemma 1 with r = 3k.

Thus, retraining with LoRA-ML leads to squared prediction error on the task task which grows
asymptotically as O (%) Although the unnecessary factor of T incurred by standard retraining is
avoided when using LoRA-ML, the rate still contains an additional factor of 3 over the ideal case
when r = k since A* is not guaranteed to be recovered exactly. However, this minor discrepancy is
mitigated when the number of tasks satisfies T' > 3. In this case, exact recovery of the ground truth
parameter A* is possible.

Theorem 8. For any T >3, if L*(A,U) =0 then A = A* and UU,” = UU; " for all t € [T

This guarantees that the ground truth parameters are the unique global minimum up to orthogonal
symmetry when there are three or more tasks, regardless of the ambient dimension or the number of
columns k. This result is surprising, as most theoretical results for multi-task learning require higher
task diversity, typically where the number of tasks T is required to be larger than the effective task
dimension k£ [DHKLL21; CMOS22]. However, we establish this uniqueness result for the absolute
condition T" > 3. As a result, we only need a rank-k adaptation to realize the test task.

Corollary 9. ForT > 3, ifﬁ*(A, ﬁ) =0, then there exists Q,V € R¥¥ such that Lr1(Q,V;A) =
0.

We then achieve the desired fine-sample prediction error.

Corollary 10. For T > 3, let E*(A, Tj) =0 and let Q*,V* € R¥™* minimize %H(A +QVT)
over all Q,V € R¥* . Then, A+ Q*V*'" satisfies Lemma 1 with r = k.

Note that the condition T" > 3 is necessary to establish Theorem 8, as if there are only two tasks we
can construct ground truth parameters such that the induced loss £* has infinite solutions. See
Appendix E.1 for an example.

Summary. These results show that all global minima of the LoRA-ML objective are low-rank
adaptable to the downstream task and achieve finite-sample test task prediction error which grows
as O (%) Crucially, this avoids the factor of 1" incurred by standard retraining. Further, if T > 3,
minimizing the LoRA-ML objective guarantees recovery of the ground truth parameters.

3.2.2 Algorithms for Minimizing (14)

As shown above, minimizing the LoRA-ML objective (14) leads to recovery of the ground truth
parameters, with a small rank-2k error term when 17" = 2. We prove that this minimization problem
can always be solved by local optimization methods when there are two retraining tasks.

Theorem 11. If T = 2, then ,C*(A, Ij) =0 if and only if (A, U) is a second order stationary point
(SOSP) of L*.

Thus, when T" = 2 local optimization algorithms for finding SOSPs, such as perturbed gradient
descent and cubic-regularized Newton method, can efficiently minimize the meta-learning objective.
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Surprisingly, when there are three or more tasks, numerical experiments (see Appendix E.2) show
that adversarially picking U;* can result in specific instantiations of (14) with spurious local minima.
In the next section, we perform extensive numerical experiments for various values of 1" which
show that these spurious minima are almost never found in practice and vanilla gradient descent is
sufficient to minimize (14).

4 Experiments

We first test our model on synthetic regression tasks. We consider data of the form y;; =
O(xy;; A* + RY) + €, for task ¢t and j € [ny]. We generate x; ;, € j, and R} just as in Section 3.
For the linear experiments, we set ®(x; ;; A* + R}) = (A" + R})x:;, and for the shallow network
experiments we set ®(x; ;; A* + R}) = ¢*T s(A* + R})x;;, where s(-) is the element-wise sigmoid
function and ¢* € R? is an additional parameter shared across tasks. Although c* is a parameter of
the network, we suppress its notation as it does not require task-specific adaptation according to the
data model. A* (and c¢* if applicable) are constructed by sampling each entry as an i.i.d. N(0,1)
random variable. We define parameters N, n such that n; = N for all t < T and np41 = n. Setting £
to be the mean squared error loss, we apply simple optimization methods to the standard retraining
(1) and the LoRA-ML (5) objectives. After recovering A (and é if applicable) during retraining, we
apply the low-rank adaptation QV ' only to A when fine-tuning to the test task. In each experiment

we vary a single hyperparameter from a fixed set of values and plot the prediction error between the
2

recovered model and the ground truth model % H(I)(XT+1; A+ QVT) —®(Xpy; A" + R}H)HF,
averaged over 10 trials. See Appendix C for hyperparameter details and further ablations for both
experimental settings.

4.1 Linear Model

For the linear experiments, we use gradient descent to optimize the loss in each training stage.
When T = 2, we use a rank-3k adaptation during fine-tuning to account for the inexact recovery
explained in Theorem 5, and otherwise use a rank-k adaptation.

1051 8 —v— T=2, LoRA-ML 1071 TR —v— n=100, LoRA-ML
T=3, LoRA-ML n=1000, LoRA-ML
104 ] —+ T=5, LoRA-ML —+— n=10000, LoRA-ML
—e— T=2,5R ] —e— n=100, SR
@ —e— T=3,SR o 10 —s— n=1000, SR
9 10 T=5, SR Q n=10000, SR
% 1074 < 107
© ©
1014 4
w0 ()]
a 10° @ 101
1014 N
101
10-24 | ! ! : ! ] | ‘.‘.7‘.7.7.7.7.‘7.7.7.—.—.—.—.—I
0 2000 4000 6000 8000 10000 200 400 600 800 1000
Iteration Iteration

(a) Varying number of retraining tasks T’ (b) Varying number of test task samples n

Figure 1: Linear model fine-tuning performance
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Figures 1a and 1b show that LoRA-ML retraining significantly outperforms standard retraining
(SR), for all data settings. When varying T beyond 2, we observe that applying gradient descent
to the LoRA-ML objective is sufficient to achieve global minimization and recover an adaptable
solution. Thus, even though there may exist spurious local minimizers, we do not encounter them
in practice. Further, the fine-tuning performance after standard retraining worsens with larger 7T'.
This is supported by our theory in Section 3.1 which shows that as T" increases, standard retraining
recovers worse solutions that leave a larger intrinsic dimension for the fine-tuning stage.

4.2 Shallow Neural Network

For the shallow network, we use the AdamW optimizer [LH19] and apply rank-k adapters in all
experiments.

10° —¥— T=2 LoRA-ML 10° 4 —%— n =100, LoRA-ML
] T =3, LoRA-ML n = 1000, LoRA-ML
\ —« T=5LoRAML —« n=10000, LoRA-ML
—o— T=28SR —e— n =100, SR
0 —s— T-3,5R @ —s— n=1000, SR
3 T-55R 8 n = 10000, SR
— —
X X
@ @
=10 =
= A
3 ? 10
[ e
0 4000 8000 12000 0 4000 8000 12000
Iteration Iteration
(a) Varying number of retraining tasks 7' (b) Varying number of test task samples n

Figure 2: Shallow network fine-tuning performance

Figures 2a and 2b again show that retraining using the LoRA-ML objective leads to much better
fine-tuning performance relative to standard retraining. Figure 2a shows that the LoRA-ML
objective effectively exploits the number of tasks, since fine-tuning performance improves as T
increases. Further, we observe in Figure 2b that fine-tuning with any number of samples after
standard retraining cannot even recover the performance of fine-tuning with just 100 samples after
LoRA-ML retraining.

4.3 LLM Experiments

To test the LoRA-ML objective on real data, we use the pretrained RoBERTa-Large language model
on the ConvAI2 dataset. ConvAlI2 consists of conversations between two personas, where each
persona is associated with a short list of factual information that informs their responses. We model
learning the dialogue continuations of each individual persona as a different task, where we aim to
select the correct conversation continuation from a set of candidates given the conversation history.

We perform retraining using 7" = 10 tasks and select the model from the epoch with the best average
accuracy on the heldout samples. We then fine-tune to 10 test tasks individually. We run 5 trials
and report the median accuracy on the heldout data from the best performing epoch for each task in
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the tables below. All training was done on a single NVIDIA A40 GPU, and we report our training
hyperparameters in Appendix D.

Table 1: Test task prediction accuracies using rank-8 and rank-16 fine-tuning adaptations

(a) Test task prediction accuracies using rank-8 fine-tuning adaptations

Algorithm Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Average

SR 43.75 40.00 43.48 41.94 41.03 37.23 42.73 43.20 41.13 40.76 41.52
LoRA-ML-8 50.00 50.00 47.82 48.39 46.15  41.49  44.55 44.00 42.55 42.68 45.76

(b) Test task prediction accuracies using rank-16 fine-tuning adaptations

Algorithm  Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10 Average

SR 43.75 43.33 39.13 38.71 39.74 35.11 38.18 39.20 39.72 38.85 39.57
LoRA-ML-8 50.0 53.33 50.0 50.0 48.72  42.55  45.45 44.80 45.39 44.59 47.48
LoRA-ML-16  43.75 33.33 36.96 40.32 43.59 39.36 42.73 41.60 40.43 40.13 40.22

Table 1a shows test task fine-tuning performance using rank-8 LoRA after each retraining method.
The SR row denotes the model recovered using standard retraining, while LoRA-ML-8 denotes
the model recovered by LoRA-ML using rank-8 adapters. Then, as suggested by Theorem 5, we
test if we can improve performance by increasing the LoRA rank during fine-tuning relative to the
rank of the adapters in retraining with LoRA-ML. Table 1b shows fine-tuning performance using
rank-16 LoRA after each of standard retraining, LoRA-ML with rank-8 adapters, and LoRA-ML
with rank-16 adapters. We observe that LoRA-ML consistently outperforms standard retraining.
Additionally, we observe that increasing the fine-tuning rank relative to the rank used in retraining
may confer performance benefits, as even though the LoRA-ML-16 model is more expressive than
LoRA-ML-8, restricting the adapter rank during retraining may act as a form of regularization.

5 Conclusion

We introduced the PEFT-ML objective function for retraining an FM on a collection of tasks
to prepare the model for subsequent downstream fine-tuning. We provide theoretical results
demonstrating strict performance gaps between standard retraining and the PEFT-ML objective
using LoRA (LoRA-ML). Empirically, a basic implementation of the LoRA-ML objective outperforms
standard retraining for adapting to unseen downstream tasks. Future avenues include extending our
theoretical analysis to more general adapters and different model architectures.
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A Related Work on LoRA-Style PEFT

There is a vast amount of work in developing PEFT methods for FMs. The LoRA algorithm
[HSWALWWC21] has established itself as a popular and successful PEFT strategy and has inspired
various extensions such as QLoRA, DoRA, and others [DPHZ23; LWYMWCC24; ZCBHCCZ23].
These algorithms are heuristics for mimicking the full finetuning of an FM to a specific downstream
task and have proven to be empirically successful in various settings. However, there is a lack
of theoretical analysis on the adaptability of PFMs under LoRA-style adaptations, the ability to
efficiently optimize LoRA-style objectives, and the kinds of solutions they recover. Some recent
works have attempted to analyze different parts of these theoretical questions.

Convergence of LoRA. [JLR24] analyzes the optimization landscape for LoRA for the Neural
Tangent Kernel regime. The authors show that LoRA finetuning converges in this setting as they
prove that the objective function satisfies a strict saddle property, ensuring that there are no spurious
local minima. However, this focuses on the actual ability of LoRA to converge to the optimal
low-rank adapter given an FM, and does not consider the adaptability of the FM in the first place.

Expressivity of LoRA. [ZL23] derives the expressive power of LoRA as a function of model depth.
This work shows that under some mild conditions, fully connected and transformer networks when
respectively adapted with LoRA can closely approximate arbitrary smaller networks. They quantify
the required LoRA rank to achieve this approximation as well as the resulting approximation error.
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B Proofs

B.1 Proof of Theorem 2
By Equation (12) we have that Agg = A* + * Zthl U;U;". In the following the expectation is
always taken over U* = (U7, ...,U%), where Uy € R¥** satisfies vec(U;") ~ N(0, Iz). Then,

T 2

T T
. 1
Ey- [Z Lt(ASR)] =) E||A+UiUy - A - Sy ooy
t=1 s=1
r 2
* Tk | 1 a sk |
Ut Ut - f Z Us Us
s=1

F

Il
M= 1
=

)
I

F
. . ,
iU k- L 3 (U;U;T - k;I)

T s=1 F
. o ;
Uy - k:IHF + |7 Z; UrUrT - kI

Il
tgﬂ

i
U

Il
Fgﬂ

o~
Il
—

F

%tr { (Ug“Ug‘T - kI) (zT: UrUrT - k:I) }]

s=1
2

x| 2 1
—TE HUtUt —k:IHF + -E

tr { (U;U;‘T - kI) (i UrUrT - kI) }]

Using the fact that each U; Uy is an independent sample of a d x d Wishart distribution with scatter
matrix I and k degrees of freedom, each term is computed as

T
'Z UUsT — kI
s=1

2
~ZE
T

2
E [HU;U;T - kIHF] — kd(d + 1)

T 27
E || U:U:T —kI|| | =Tkd(d+1)
s=1 F|
. -
E |tr { (U;‘U:T - M) (Z UrurT - kI) } = kd(d + 1)
s=1 J

Thus,

T
Ey- [Z Li(Asr)| = Tkd(d+ 1) + kd(d + 1) — %kd(d +1)

t=1

=(T+1- %)kd(d +1) = Q (Tkd?)
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B.2 Proof of Propositions 3,4

Recall Agg = A* + £+ 31 U;U; . Then for any Q,V € R,

A 2
£50(@V: Ast) = o [ A+ U3 UL, A - VT
2

1 *
9 Uri. U T+1 ZUt —QVT

F

By the assumption in Remark 1 we have that rank (U}HU}L -, Ut*Ut*T) = k(T +1). Then
Proposition 3 follows from that fact that rank(QV' ") < r.

Further, as T — oo, the strong law of large numbers implies that % Zthl Ut*Ut*T —E [Ut*Ut*T} =
kI. Thus for large T,

2

T
HUI*’+1UT+1 ZUt*Ut*T_QVT HUT+1 T+1 kI — QVTH (15)
rI F

Using classic low-rank matrix factorization results, the Q*V*T that minimizes HU} HU}L —kI-QVT Hi,
will exactly capture the r eigen-directions of Ur. HU{FL — kI with largest magnitude. But,

Ur +1U:’FI_I — kI has d — k eigenvalues of magnitude k, so Q*V*' can only capture r of them. Thus,
U}HU}L — kI —Q*V*" > (d—k —r)k?. Since Q*V*T minimized this quantity, we have that

L5 1(Q,V ;5 Asg) > (d— k —r)k? vVQ,V € R¥"
Thus, L741(Q,V ; Agr) scales as (d — k — r)k? ~ (d — r)k? since k < d.

B.3 Proof of theorem 5

Since L*(A, U') =0 and £* > 0 we must have that V4£* = 0.
Thus, A = A* — % Z]Tzl (UA']-U'J-T — U;U]*T). Plugging this into £* gives

2
0= L*(A,

s
S>
I
N | =

T
A+ UU;T - <A* - ;Zl (USU;T - US*UjT)> AN

F
1< 1 T ’

Tacal T Ty Tacal
2§_1 UU; —UtUtT—TE_l (USUS U )

~+

F

Thus each term of the summation is zero, so for all ¢, s € [T,

Ul -vrut =00 -ururT.
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Combining these results gives that

A=A — ;i (USUST - U;U;T)

—A* (Ulfff - UfoT)

Let C = — (ﬁlﬁf - UfoT). Then A = A*+C and rank(C) < rank(U U] +rank(UU;T) <
2k.
Note the the effective remaining test-task dimension is

rank (A* YU UL, — A" — c) — rank (U; LU — C)

< rank (U}+1U%11> + rank (C)

< 3k

B.4 Proof of Theorem 8

Proof. Since E*(A, Ij) = 0, we have that for all ¢,s € [T,

Ul —vrurT =00 —-ururT (16)

Applying this to the first three tasks and rearranging gives that

u;UT = 0,0! +ususT - 0,07 (17)
= ﬁlﬁf + UgUgT — ﬁgﬁg (18)

We first show that im(U;) = im(U7).
Since UFU;T = 0, we must have that im(Us) C im(U;) + im(Uy) and im(Us3) € im(U;) + im(U%),
as otherwise there would exist a vector on ker (ffl ﬁlT +U;U03T) N ker(ffg AzT )+ whose existence
contradicts the positive semi-definiteness of Uy U;7.
Thus,
im(U7) C im(Uy) + im(U3) (19)
im(U71) + im(U3) (20)

Using that fact that for subspaces X,Y,Z, X CY = X +Z CY + Z, we can add im(Uy)
and im(U3) to both sides of 19 and 20 respectively. This gives:

im(U7T) & im(Uy) C im(Uy) + im(Uy) (21)
im(UY) & im(Uy) C im(U;) + im(U3). (22)
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For t € {2,3}, we clearly have that dim (1m(f]1) + im(Uf)) < dim im(U1) + dim im(U}) < 2k, and
dim (im(U75) + im(Uy)) = 2k. Thus,

(im(U7) @ im(U3)) = (im(01) @ im(U3) ) (23)
(im(U7) @ im(U3)) = (im(01) @ im(U3) ) (24)

Lemma 12. ([im(f]l) @ im(U3)] N [im(T) @ im(Ug)]) = im(U)

Proof. Clearly, im(U,;) C ([un(fh) @ im(U)] N [im(T,) @ 1m(U§‘)}) To show the converse, con-
sider x € ([1m(U1) @ im(U3)] N [im(T) @ 1m(U§‘)]>

By assumption there exists some a, b, ¢,d € R* such that

x =Ua+Ub (25)
=Uc+Uid (26)

Thus, )
Ui(a—c)+ Uib—Uid=0. (27)

By Equation 23, we can write
im(Us) = ([m(Uy) & im(Uy)] N [im(Uy) & im(Uz)))
= ([im(01) @ im(U3)] N [im(U3) @ im (U3 )])

Thus, im(U;) N [im(Uy) @ im(U3)] € im(Uy) Nim(U$) = {0}, so

im(U1) N [im(U3) @ im(U3)] = {0} (28)

Applying Equation (28) to Equation (27) implies that @ = cand b = d = 0. Thus = Uy a € im(U}),
50 <[im(f]1) @ im(U3)) N [im(T) @ im(Ug)]) C im(0y). 0

Then Equations (19) and (20) combined with Lemma (12) implies that im(Uy) C im(U,) but
dim(im(U7)) = dim(im(Uy)) = k, so im(U7) = im(Uy).

Since the initial assumptions about U; and U7 analogously hold for the corresponding matrices for
tasks 2 and 3, by the exact same argument we can show that

im(U}) = im(U;) Wt € [T]. (29)
Then by equation (16), im(U;) D im (ﬁlﬁlT - Ul*UfT> =im (ﬁgﬁg — U§U§T> C im(Uy). Thus,
im (UIUE’ . Ul*UfT) Cim(U?) Nim(UY)
= {0}.

22



Thus U, U] = U;U;T. Then by Equation (16), U,U] = U;U;T for all t € [T]. Lastly, since
L*(A,U) =0, we have that VAL*(A,U) =0, so

T
A * 1§: sy | *
A:A +Tt:1UtUt —UtUtT:A

B.5 Proof of Theorem 11

Clearly if £*(A,U) = 0, then (A, U) is an SOSP. The reverse direction is the challenging part of the
proof. We equivalently prove that if (A, U) is a critical point and £*(A,U) # 0, then V2L*(A,U)
has a negative eigenvalue.

Assume for the sake of contradiction that (A, U) is a critical point and £*(A,U) # 0. Then,

T
VALY A, U) = )+ (00, T UUT) =0 (30)

t=1
Vu,L(A,U) =2 (A A+ U0, —U; U;T) U, =0 (31)

Thus,
1 a Sy T el
-z (UtUt _UU; ) . (32)
t=1

Define Bt(ﬁ) = UtUtT — Ut*Ut*T — % 3:1 (U'SUST — US*US*T). Despite being a slight abuse of
notation, we refer to B;(U) as just By for the remainder of the proof.

Then (31) equivalently states: R
B.U, = 0. (33)

Note that by construction, ZtT:1 B; =0.

Considering £ as a function of the flattened vector [vec(A);vec(Uy);vec(Us)], and let U; =
[1 ... x|, Us = [y1 ... Y], we compute the Hessian

VAL Vi, VaLl Vu,Val

VL= |(Vu,VaL) Vi L 0 (34)
(Vu,VaL)" 0 V3, L
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where
VAL =21,
VUIVAﬁ* = [(a:l D ccl) e (:I:k D :I:k)] € RdQXdk

Vu,Val' = [(y1 @) ... (yx ©yx)] € RE**
Vi L' =2A+U U} — A* - UU; ") @ I,

(x1z] + ||o1]3] ng + xgzclT oo x{xpd + ]
o xgx1 I + 2129 TOTJ + |]cc2H2 oo xgxpd + TR

L z] 2] +x2) o mpx) +lkl3 T

VL =2(A+UU) — A* —U3U; ") @ I,

Yyl + s oyl yed + yQ:'élT oyl ud + Yy,

Ly |y tu vy D vy Tl
: : : -
Ly vl + yry) oy luklla

Note that @ denotes the Kronecker sum defined as X @Y = I ® X +Y ® I where ® is the
Kronecker product.

Lemma 13. £*(A,U) = 0 if and only if B; = 0 for each t € [T)].

Proof. Since (A, U ) is a critical point, then plugging Equation (32) into the definition of £ gives
that

L*(A,0) ZHBtHF

Thus £*(A,U) = 0 if and only if B, =0 V. O

Lemma 14. If V%IE*(A, U) = 0, then the eigenvectors corresponding to the non-zero eigenvalues

N AT o
of UsU;  are the leading non-negative eigenvectors of A* + Ut*Ut*T — A forallt € [T].

_ . . 2 _
Proof. Consider the function f;(Uy; A) = % HA* + Ut*Ut*T —A— UtUtTHF. f+ is simply the tth

summand in £* where A = A is fixed and we only consider the variable U;. Minimizing f; is
identical to the problem of symmetric matrix factorization.

Using well-known properties of symmetric matrix factorization, since V ft(ﬁt) = 0, we must have
that U; = V;T where the columns of V; are the properly scaled eigenvectors of A*+U; Ut"‘—r — A with
non-negative eigenvalues where each column has norm equal to the square root of its corresponding
eigenvalue, and I € Oy, is some orthogonal matrix. Further, if the eigenvectors corresponding to the
non-zero eigenvalues of ﬁtﬁtT are not the leading non-negative eigenvectors, then V? ft(ﬁ ) #0
by [ZQW20]. Since V2f(U;) is a diagonal block of V2£*(A,U), V2f;(U;) # 0 would imply
VQE*(A U) # 0. O

Remark 3. Without loss of generality, we can assume that the eigenvectors corresponding to the

N AT R
non-zero eigenvalues of UsUy  are the leading non-negative eigenvectors of A* + Ut*Ut*T — A for
all 1.
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Lemma 15. (UQU'QT - ﬁlﬁf) T = (U;UQ*T - Ul*UfT> x  for all x € im(Uy) + im(Uy).

Proof. Recall By = % (ffl ﬁlT - Uy Ul*T — ﬁgﬁ; +U; U2*T>. Then applying first-order stationar-
ity and the fact that B, = —Bj, we have

- Ulljf) U, = (U;U;T . U1*U1*T> U,

/-\/\

— U0, ) U, = (U;U;T - Ul*Ul*T) Us.

Corollary 16. U,U, — U\U, and UjU; " — UfU; " share an eigenbasis.

Proof. Using the lemma, any non-zero eigenvector-eigenvalue pair of ﬁgUzT — ﬁlﬁlT is also an
eigenvector-eigenvalue pair of UsU35 T Uuy T Denote the space defined by the span of these
eigenvectors as S. Then all other eigenvectors of UjUs ' — UFU; " are orthogonal to S, so they
are also 0-eigenvectors of UsU, — U U". Thus the two matrices share an eigenbasis. O

Corollary 17. dim (im U, +im Ug) < 2k—1, i.e., the set of columns of U, and U, are not linearly

independent.

Proof. Assume for contradiction that the vectors in the set § = {Uye; |i=1,...,k} U{Use; | i =
1,...,k} are linearly independent, where e; is the ith standard basis vector in R¥.

Then note that (thlT — 02(7;) x # 0 and (Ui"UfT — UQ*UQ*T) x # 0 for all x € S. By Lemma

(15), ﬁlﬁl Ugf]z and Uy U;" —U3U;" agree for each vector on the 2k-dimensional space
span(S). But, both rank(U1U1 ﬁgﬁQ ) rank(UlU *T _UsU; ") < 2k by construction. Then
by dimension Countlng, U, Ul UQUQ and UU; " — U3U; " must send span{S}* to 0. Thus,
U, U] — U,U, and UjU; " — U3U; " agree on the entire basis formed by concatenating basis
vectors of span{$ }l with those of span(S). This implies that U U," — UU, = UrU;: T —UzU; T

and thus By = U,U]" — U,U, — U{U;" + U;U;" = 0. Then By = —B; = 0 so by Lemma 13,
L£*(A,U) = 0 which is a contradiction. O

Lemma 18. UjU; " — U;U;" has exactly k positive and k negative eigenvalues.

Proof. First, note that Uj UQ*T has exactly k positive eigenvalues and k — d eigenvalues of 0. Then
UsU; " — (Ufe1)(Ufer) " has rank k 4 1 because of the linear independence of the columns of
the combined set of columns U; and Uj. Further, since we subtract (U;e1)(Use;)', we must
be accumulating an additional negative eigenvalue relatlve to U;U; 7. Continuing this process
shows that subtracting (Uje;1)(Ufejy1)" from UsU; " 1_1(Ute;)(Ure;)" contributes exactly
one more negative eigenvalue, since Ufe;;11 can never be written as a linear combination of
{Ufe1,...Uiei, User,...Use;} for 0 < j < k. The result then follows from induction. O

Lemma 19. rank(U;) = rank(Us) = k.

Proof. Assume for contradiction that rank(ﬁl) m < k without loss of generality. Since by Remark
(3) we assume the columns of U are the leadlng k non—negatlve elgenvectors of A*+UUY T_A=
U1U1 — B, this must imply that A* 4+ U7 U —A-— U1U1 =-B; <
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Plugging in the definition of Bj gives that % (lAfllAflT — Ul*Ul*T — ﬁzﬁ; + U§U§T> %= 0. Thus,
UU] =UU:T + ObU] —UU; T = UrU;T —U3U; T, This contradicts the fact from Lemma
(18) that UjU;T — UjU; " has k positive eigenvalues. O

With this lemma, we will prove the existence of a direction of V2£* with negative curvature. Instead
of directly working with this matrix, we instead use the Schur complement to work with a different
form.

Theorem 20. (Schur Complement) Since V4 L*(A, Tj) =2I =0, V2L*(A,U) 3= 0 if and only if
VL LHA,U) - (VAVUE*(A,U)) ( 2 £*(A,U) ) (vUvAc*(A,U*)) =0

Define M = V2, £*(A,U) — (v AVULH (A, U)) (vilc*(A, U))_l (vUv ALY (A, U)).

For example, when k = 2 and letting Uy = [x1 ®2], Uz = [y1 y2], we have

M, M12}
M = ,
[Mng Moo
where
M, = 2B + z12] + ||=1]3 x| xol + oz |
zz1 I +x129 2B, + momy + |3
My — [~y ] —yiz] —x{yol - y2331T]
oyl —yizg @y yol —yoxg
r 2
Moo — |2B2F yiy! + vl yi yoI + Yoy,
2= T I T 2B T 2
Yy yil + Y1y, 2 + Y21y + [|y2ll

For brevity, we do not include the full form of M for general k. However, we can make an easy
simplification that will allow for a much cleaner expression.

Using Corollaries (16) and (17), there is an eigenvector z of UiU; ' — UFU;" with eigenvalue
A # 0 such that z € ker (fbﬁ; — Ulffl—r ) Assume without loss of generality that A > 0,

and consider a € R?*. Define the function g(-;z) : R?* — R parameterized by z such that
gla;z) = (@ ® z)| M (a® z), where we partition a = [a1; as], a1,y € RF. Then after some
algebra,

. _ I > 2 2 2
g(a;z) = |Urar + Uzay ,tA leall; — ezl ) - (35)

We prove the existence of a € R?* & € R? such that g (a; ) < 0 considering two different cases.
Define N~ : S5 — Z as the function that returns the number of strictly negative eigenvalues of its
input.

Case 1: N™ (0,07 —ThUT ) < k.

Using Corollary (17), we can pick a such that U,aq + Usas = 0, a1, a2 # 0.
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Because N~ (172(?; — 0,07 ) <k, N~ (U3U3T = UU;T) = k, and UU5 U, U] and UsU; T —

UfoT share an eigenbasis by Corollary 16, there exists 2~ € R? that is a A -eigenvector of

U;U;T —U;UT, A\~ < 0, where z € ker (ﬁgﬁ; — ﬁllle>
Then for the same choice of «,
sign (g (5 2)) = sign (o[} — [l
sign (g (s 27)) = sign (Jlasf3 — o)

Then if ||a1]], # |lazll5, one of the above expressions is negative and thus M has a negative
eigenvalue. This then implies V2L*(A,U) # 0.

Otherwise |||, = [[az]ly. Then g (a;2) = 0, but Va,g(e; ) = Uy (U@1 + UgaQ) ~ s =
—2Xa2 # 0. Thus g(a; z) = 0 and Vg(a; z) # 0 so there exists & in an infinitesimal neighborhood
around o where g(a ;z) < 0. Thus M has a negative eigenvalue so V2L*(A,U) # 0.

Case 2: N— (f]gUQT — lef]lT) =k.
Define m = dim <1m(l71) N 1m(lj2)> By Corollary 17, m > 1, so we can select orthogonal matrix

T € Oy, such that UyTe; € (im(ﬁl) N 1m(lj2)) Define y = Usle;.

Clearly for any B € Sy and R € ST, N~(B) > N~ (B + R). Then since N~ (—fjlr]f ) = k by

Lemma (19), we have that

T T T 2 > T T

k=N"(—U0])> N (yy —U,U])=N" ((U2I‘61> (U2F61> — U0, )
~ N T A A A A A~ A
> N~ ((UQF) (UQF) - U1U1T> — N~ (U2U2T - U1U1T> — K,
Thus, N~ (yy ' — U]Ile) = k. But, since y € im(Ul), rank (ny - ﬁlljl—r) = k. Thus,
-UU] <0. (36)

Take a such that ﬁlal = —y and ay = T'e;. Then

vyl — O0] _( )( )TJLUI (37)

~- U <a1a1 —I) U/ <o0. (38)

Therefore ||, < 1.
~ N 2
Then g (e 2) = |Ora + O |+ A (Il — leall3) = A (Jleul3 ~ 1) <.

If g (av; 2) < 0, then we are done. Otherwise, g (a; z) = 0. Then the same analysis from Case 1 will
show that Vg(a; z) # 0, so there exists & in an infinitesimal neighborhood around a where g(& ; z)
is strictly negative. This then implies our desired result.
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B.6 Derivation of Equation (8)

Recall our generative model where each input sample x € R satisfies E [] = 0 and E [zz | = 021,
each noise sample is generated independently of = as € ~ N(0,021;), and y = (A* + R} )z + €.
Then,

2E[L}(A)] = E [y — Az|3]
—E [|(A* + R} — Az + €3]

=E |[I(A" + Rf — Apz| + |lel; + 2" (A" + R — At)w]

~E :tr (J(A* +R —A) (A" + R — At)wﬂ +o2+2E[]| (A* + R} — AE [2]
=t {(A"+ Ry - A)T(A" + R — A)E [z |} + 0

= o2tr ((A* +R —A) (A" + R} — At)> + o2

= oy |A* + R} — A} + o7

Thus, E[£} (As)] = & (afc |A* + R} — Aq||% + a?). Then E[L}(A;)] = E[L}(A;)] by linearity of

expectation, so

0.2

1 1 2
(micran =) =5 o weor” -

g2
O—I

2
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C Additional Experiments
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Figure 4: Shallow network fine-tuning performance, additional ablations

C.1 Synthetic Experiment Data Parameters

Experiment T n N k d Oy | Oc
Linear, varying T {2,3,5} 100 5000 1 10 1 ].1
Linear, varying n 3 {100,1000,10000} 5000 1 10 1 ].1
Linear, varying N 3 100 {100,1000,10000} 1 10 1 1.1
Linear, varying k 3 100 1000 {1,3,5} 20 1 1.1
Linear, varying d 3 100 5000 1 {5,10,20} | 1 | .1

Shallow Network, varying T' | {2,3,5} 100 1000 1 10 1].1
Shallow Network, varying n 3 {100,1000,10000} 1000 1 10 1].1
Shallow Network, varying N 3 100 {100,1000,10000} 1 10 1 1.1
Shallow Network, varying k 3 100 1000 {1,3,5} 10 1] .1
Shallow Network, varying d 3 100 1000 1 {5,10,20} | 1 | .1

Table 2: Synthetic Data Parameters
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Hyperparameter Standard Retraining | Meta-LoRA-8 | Meta-LoRA-16
Learning Rate 5e-5 3e-5 5e-5
Learning Rate Schedule Linear Linear Linear
Batch Size 6 4 4
Epochs 30 30 30
Optimizer AdamW AdamW AdamW
LoRA Rank N/A 8 16
LoRA Dropout N/A 0.1 1
LoRA Alpha N/A 16 16

Table 3: Retraining Hyperparameters

D LLM Training Hyperparameters

Hyperparameter Rank-£ LoRA Fine-Tuning
Learning Rate 3e-H
Learning Rate Schedule Linear
Batch Size 6
Epochs 30
Optimizer AdamW
LoRA Rank k
LoRA Dropout .1
LoRA Alpha 16

Table 4: Rank-k LoRA Fine-Tuning Hyperparameters, k € {8, 16}

D.1 Note on Number of Trainable Parameters

For simplicity assume our model architecture consisted of m layers, where each layer was parameter-
ized by a d X d matrix, and we use rank-k adaptations for each layer for our Meta-LoRA objective,
where k < d. Then the standard retraining method uses md? trainable parameters, while minimizing
the Meta-LoRA objective uses m(d? + 2kdT) trainable parameters. Although Meta-LoRA uses some
additional parameters, since k is small relative to d and we work in the setting where k(T + 1) < d,
asymptotically m(d? 4 2kdT) = O(md?) so the increase in trainable parameters is minor. After
running either of these retraining procedures, the fine-tuning stages are identical and require the
same number of trainable parameters no matter which retraining procedure was run.

E Theory Notes

E.1 Non-Uniqueness of Global Min for 7' = 2

Consider T'=2,k=1,d =2, A* =0, and u; = e; for t = 1,2, where e; is the t;, standard basis
vector. Clearly the ground truth perturbations u; are orthonormal and thus linearly independent.

The set of global minima of £* are (A,U) such that A = + S (u;kuz‘—r - ututT) and wu, —
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Figure 5: Loss does not decrease near these spurious local minima

wiuf '’ — % 321 (uSu;r — u:u§T> = 0. It is not hard to see that a global minimum follows from

1 0 . .
any set values of w1, uy such that ululT — ugu;r = [ ] When properly parameterized, this

0 -1
system of equations defines a hyperbola where each point corresponds to a global minimum of L£*.

E.2 Spurious Local Minima

We observe that for T' > 3, for certain tasks U* = (U, Us,Uy), it is possible to find points U that
are local minima, but not global minima. To find these points, we sample true tasks U* from a
normal distribution and use a numerical solver to find zeros of the gradient of the reduced loss

. T
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2

T
1
vu] -uur T - 2SOl -y
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Through the Schur complement argument used to prove Theorem 11, we can see that L has a
spurious local minimum only if £ has a spurious local minimum.

Typically, these zeros are close to the global minimum. Occasionally, it is possible to find a point U
with gradients close to 0 and with positive definite Hessians. We then confirm that these are close
to the spurious local minimum through the following argument.

Consider the function X X
r(U) = vec(U — U) Tvec(VL(U)).

Clearly, there is a minimum of £ in the é-ball of U if #(U) > 0 for all U on the boundary of the
d-ball. As r is continuous, if for some small enough €,y > 0 if »(U) > v > 0 for all U on the e-net
of the boundary of the d-ball, then there exists a spurious local minimum in the J-ball around U.
Numerically, such points and ¢, §, and v can be found which would imply that spurious local minima
exist, barring any errors due to numerical computation. To confirm, we run gradient descent from
this point and observe that the loss stays constant.

32



F Example Pseudocode for Minimizing (5)

Algorithm 1 Meta-Adapter Training

1: Input: Tasks Ty, t € [T], learning rate 1, number of epochs N, batches per epoch N,
2: Initialize: Model parameters Wy, Bét) forallt=1,...,T

3: for epoch e =1 to N, do

4: forb=1,...,Nydo

5 fort=1,...,7T do

6: Load next batch §;; from 7;

7

Compute gradient g¥) = Vw o (Z(w,y)eﬁt,b E((‘I)FT (CU W, a(t)) 79))

8: Update adapter parameters: 06(;21 — 09 — TNeGp(t)
9: end for

10: Update base parameters: Weiq < W, — 1, 23:1 g@.
11:  end for

12: end for
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